Well logging interpretation (Petrophysics)

Advanced Training Course Syllabus

Duration: 36 hours

Training period: 1 week, 36 hours per week

Nº	Торіс	Hours	Form of assessment
1.	Overview of well logging	4	
	Introduction of well logging (wireline,		
	LWD, open or cased hole), the		
	connection between well logging and		
	reservoir properties	<u> </u>	
2.	Electrical well logging	6	
	Physics and application of Spontaneous		
	Direct current logging		
	Induction logging		
	Micro electric legging		
	Formation micro-resistivity imaging		
	(FMI)		
3.	Nuclear logging	4	
	Basic nuclear physics		
	Gamma ray logging		
	Formation density logging		
	Neutron porosity devices		
4.	Sonic well logging	2	
	Physics of sonic logging—acoustic waves		
	in porous rocks		
	acoustic velocity logging		
	acoustic amplitude logging		
5.	Application and Interpretation of	8	
	logging data		
	Reservoir identification		
	Lithology estimation		
	Porosity calculation		
	Permeability calculation		
	Clau quantification		
6	Resis core compliant analysis for well	Λ	
0.	log interpretation	-	
	Introduction to Core Drilling		
	Core Analysis Methods for Measuring		
	Reservoir Rock Properties		
7.	I WD technologies and its application	2	
8.	Modern technologies of well logging	6	
	Total	36	Final test
L			

Applied Geostatistics

Advanced Training Course Syllabus

Duration: 24 hours

Training period: 1 week, 24 hours per week

Nº	Торіс	Hours	Form of assessment
1.	Basics of static geological	6	
	modelling		
2.	Basics of applied geostatistics		
	(Concept of geostatistics and its		
	application to geological		
	modelling, experimental and		
	theoretical variogramm,		
	variogramm analysis, kriging, co-	6	
	kriging, using of trends)		
	Practical application of		
	geostatistics for map calculation		
	and petrophysical properties		
	calculation.		
3.	Stochastic modelling (concept of		
	gaussian random function		
	simulation). Application of co-	6	
	kriging and trends in stochastic		
	modelling for porosity prediction.		
4.	Discrete geostatistics (lithofacies		
	modelling). Application of		
	geostatistics for the seismic and		
	well logging data integration for	6	
	lithofacies prediction. Application		
	of seismic trend for the lithofacies		
	prediction between the wells.		
	Total	24	Final test

Seismic Interpretation

Advanced Training Course Syllabus

Duration: 36 hours

Training period: 1 week, 36 hours per week

Nº	Торіс	Hours	Form of assessment
1.	Travel time and amplitude	20	
	interpretation		
1.1	Well logging data for seismic	2	
	interpretation. Acoustic and		
	density logging.		
1.2.	Types of seismic boundaries 1D,	4	
	2D, 3D, 4D seismic surveys.		
	Vertical seismic profiling (VSP).		
1.3.	Tracing reflective horizons. Faults	4	
	identification. Time maps.		
1.2.	Velocity models Time-depth	10	
	conversion. Structural maps		
	construction.		
2.	Sequence-stratigraphic and	6	
	seismic-stratigraphic		
	interpretation		
2.1.	Seismic stratigraphy. Approaches	2	
	to seismic stratigraphic analysis.		
	Type and form of seismic recording		
	in various facies.		
2.2.	Sequence stratigraphy. Sequences,	4	
	system tracts. Sedimentation		
	cycles.		
3.	Seismic Data Attributive Analysis	4	
3.1.	Seismic Attributes. Coherency,	4	
	Dominant frequency, Chaos,		
	Cosine of phase.		
	Scope and limitations.		
4.	AVO analysis and seismic	6	
	inversion		
4.1.	AVO analysis Scope and	2	
	limitations.		
4.2.	Seismic inversion. Relative	4	
	acoustic impedance. Correlation		
	between seismic data and		
	porosity. Inclusion of seismic data		
	in a static geological model.		
	Total	36	Final test

Static Geological Modelling

Advanced Training Course Syllabus

Duration: 36 hours

Training period: 1 week, 36 hours per week

Nº	Торіс	Hours	Form of assessment
1.	Fundamentals of static geological	20	
	modeling		
1.1.	Theoretical Foundations of	4	
	Geological Modeling		
1.2.	Basics of core analysis methods for	8	
	constructing a geological model		
1.2.	Fundamentals of well logging data	4	
	interpretation		
1.3.	Fundamentals of seismic	4	
	interpretation		
2.	Basics of Geostatistics for building	8	
	geological models		
2.1.	Main types of interpolation	2	
2.2.	Geostatistics in modeling.	6	
	Variogram. Kriging. Stochastic		
	modeling.		
3.	Building a static geological model	8	
	Total	36	Final test

Practical Application of Neural Networks in Geology

Advanced Training Course Syllabus

Duration: 24 hours

Training period: 1 week, 24 hours per week

Nº	Торіс	Hours	Form of assessment
1.	Basics of Machine learning. Main concepts. Supervised and unsupervised learning.	4	
2.	Neural network technology. Neurons. NN training.	4	
3.	Supervised machine learning. Regression (calculation of porosity based on core samples). Classification (estimation of facies in the well)	8	
4.	Unsupervised machine learning. Clustering of data (Machine learning based seismic facies analysis)	8	
	Total	24	Final test

Advanced numerical simulation of thermal methods with air and steam

injection for improved recovery of highly viscous reservoirs

Advanced Training Course Syllabus

Duration: 40 hours

Training period: 1 week

Nº	Торіс	Hours	Form of assessment
1.	Principles of thermal EOR numerical simulation	4	
	Current commercial softwares for simulation,		
	thermal properties (heat transfer and main		
	temperature dependent parameters), general		
	simulation workflow		
2.	Phase behavior modeling for numerical	4	
	simulation of dry in-situ combustion process		
	Laboratory measurements, components/pseudo-		
	components definition, hydrocarbons' phase		
	transition, k-values		
3.	kinetic model for numerical simulation of dry in-	6	
	situ combustion Principles of reaction kinetics,		
	main oxidation reactions of oil, air injection related		
	laboratory measurements, the combustion tube		
	experiment		
4.	Build a 1D lab-scale numerical model for dry in-	8	
	situ combustion with air injection		
	Create geology grid, importing the built fluid		
	model, importing kinetic model, creation of an		
	injection schedule, History matching of a		
	combustion tube experiment.		
5.	Build a 3D field-scale numerical model for dry in-	10	
	situ combustion with air injection		
	Import geology grid, creation of an injection		
	schedule, upscaling lab-scale results		
6.	Creation of a schedule for a 3D field-scale	8	
	numerical model with steam injection		
	Total	40	Final test